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Abstract 

Background and objective: In the realm of analytical chemistry, multivariate calibration involves creating 

mathematical models that connect diverse instrumental signals with analyte concentrations. This approach 

provides a mean to quantitatively analyze complex mixtures, particularly in multicomponent systems. To 

address food adulteration concerns, this paper explores the application of Raman spectroscopy and Partial Least 

Squares Regression (PLSR) using the MVC1 software. The main objective is to demonstrate the software's 

efficiency in quantifying the adulteration of hazelnut oil in extra virgin olive oil (EVOO). 

Materials and methods: The analysis leverages the MVC1 software, a valuable tool for multivariate linear and 

nonlinear calibrations. One-leave-out cross-validation and the Durbin-Watson statistical test are employed to 

determine the optimal number of PLS factors and identify outliers. Statistical parameters including RMSEP, 

%REP, R², and explained variance are used to evaluate the calibration model's performance. Key figures of merit 

including sensitivity, analytical sensitivity, LOD, and LOQ, are computed to assess the analytical technique's 

precision and reliability. 

Results and conclusion: The study effectively quantifies the percentage of adulteration in EVOO by hazelnut 

oil, a pressing concern in food authenticity and safety. The results demonstrate the MVC1 software's capability 

in establishing reliable calibration models. By achieving a balance between sensitivity and analytical sensitivity, 

the model accurately predicts analyte concentrations. It also sets robust detection and quantitation limits, 

ensuring precise analysis. This research showcases the practical application of advanced analytical techniques 

and software tools to address real-world problems, contributing to the authenticity and purity of food products 

in the market. 
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1. Introduction 

In the realm of analytical chemistry, multivariate 

calibration entails the development of mathematical 

models that establish connections between unsele-

ctive multiple instrumental signals and analyte 

concentrations [1,2]. In contrast to univariate calib-

ration, which focuses on single signals, the utiliza-

tion of multivariate signals allows for the compen-
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sation of varying contributions from non-analytes 

within an unknown sample. This capability enables 

quantitative analysis even within inherently unsele-

ctive multicomponent systems [3]. The success of 

multivariate calibration is evidenced by its extensive 

application, particularly in near-infrared (NIR) spec-

troscopy, dating back to the 1970s [4]. Over the last 

few decades, numerous other instrumental signals, 
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including spectroscopic, electrochemical, chroma-

tegraphic, and more, have been integrated into this 

dynamic realm of multivariate calibration. 

The instrumentation required for the measurement 

of first-order data is quite straightforward; most 

spectroscopic, chromatographic, and voltametric 

equipment can readily provide this vectorial 

information. In contrast, the measurement of 

second- and third-order data can be achieved either 

through a single instrument or by combining 

multiple instruments. Advancements in analytical 

instrumentation have led to the proliferation of 

multiply hyphenated techniques, often referred to 

as hyperhyphenation or hypernation [5]. These 

techniques yield data of escalating complexity, 

presenting challenges from both experimental and 

theoretical perspectives. 

Raman spectroscopy has emerged as a powerful 

analytical tool in the field of food science and 

technology. This non-destructive technique allows 

researchers to gain valuable insights into the 

composition, quality, and safety of food products. It 

is particularly effective in identifying and quanti-

fying various compounds, including nutrients, 

contaminants, and additives, contributing to food 

authenticity and safety assessment. Raman spectro-

scopy's ability to provide rapid and precise data 

makes it invaluable in monitoring processes such as 

food production, storage, and quality control. Its 

impact on food science is evident in applications 

ranging from assessing food adulteration to 

understanding molecular changes during cooking 

and processing, ultimately ensuring the production 

of safe and high-quality food products. 

First-order calibrations are powerful tools for 

analyzing mixtures, even in complex samples. In 

many commercial laboratory instruments, these 

methods are integrated into the device's software as 

standard procedures. Moreover, user-friendly soft-

ware and computer coding for multivariate analysis 

are readily available. Despite these advantages, 

there is still a strong need for developing first-order 

multivariate calibration methods and gaining 

familiarity with the existing methods and software. 

Researchers can effectively address many quantitative 

analysis challenges using first-order calibration meth-

ods as their optimal solution. 

To gain a deeper understanding of how to implement 

a first-order calibration method, this article aims to 

provide a practical insight into solving a problem 

related to food and adulteration using multivariate 

calibration. Efforts have been made to equip resear-

chers in this field with a powerful and accessible 

software tool, enhancing their skills. Determining the 

percentage of adulteration in virgin olive oil serves as 

a chosen example, and the steps involved in a 

multivariate quantitative analysis, along with the 

performance metrics of the results, are thoroughly 

examined and discussed. 

2. Materials and methods 

2.1. Materials and sample preparation 

This study analyzed 33 synthetic mixture samples of 

pure Extra Virgin Olive Oil and hazelnut oil. The 

edible oils were purchased from various suppliers. 

Pure extra virgin olive oil samples were blended with 

hazelnut oil adulterant to produce adulterated samples. 

The percentage of adulterations were from 3 to 90 

percent of hazelnut oil. 

2.2. Raman measurements 

The spectral gaining was conducted using Raman 

spectroscopy (Raman microscope model TDLG100, 

Teksan, Tehran, Iran). Each measurement was 

performed in the spectral range of 4200 to 200 cm-1. 

This device is equipped with a 785 nm YAG laser. 

Laser power, integration time, and average number 

were selected as 300 milliwatts, 3 s, and 5, respec-

tively, to get optimum Raman peak intensity. The 

scans are done by placing the sample plate in the 

sample holder, where the light is focused onto the 

sample, and their average spectrums are measured 

after three scans. All the measurements were 

conducted at room temperature, and the collection 

time was 15 s. All the samples were scanned under 

same condition. 
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3. Results and discussion 

3.1. PLS in action: Case studies illustrating the 

power of multivariate calibration 

Calibration is the process of establishing a rela-

tionship between measured variables and one or 

more desired properties. Instrumental responses, 

such as spectra, typically consist of signals related 

to the concentration of analytes, and during the 

calibration process, a model is developed to 

determine their relationship with the concentration 

of the analyte(s). Univariable calibrations are 

usually not suitable for the analysis of complex 

mixtures due to the need for selectivity in the 

measured signal. 

Multivariable calibration models are capable of 

establishing the relationship between measured 

signals, such as spectra in a region where there is 

even significant overlap between the responses of 

components, and the concentration of analyte(s). In 

this way, in the machine learning (ML) process, this 

multivariable relationship is discovered and used 

for predicting concentrations in unknown samples. 

Machine learning processes are performed using 

different computational algorithms. Here, we 

discuss the widely used machine learning algorithm 

known as "Partial Least Squares Regression" 

(PLSR). 

Partial Least Squares Regression (PLSR) is a 

powerful machine learning tool used in multivariate 

calibration. It helps establish a relationship between 

complex spectroscopic data and the concentration 

of analytes. PLSR finds patterns in the data by 

capturing the most significant features in both the 

spectra and the concentration values. It does this by 

creating a set of latent variables, or factors, that best 

explain the variation in both datasets. PLSR is 

particularly valuable when dealing with highly 

overlapping signals, making it a reliable method for 

predicting analyte concentrations from intricate 

spectral information. 

With the availability of reputable computational soft-

ware and packages in the field of multivariate 

calibrations, machine learning users need not be 

experts in the development of computational and 

chemometric methods. Typically, software is designed 

in a manner that allows non-professional users to 

benefit from them in solving their problems. 

Nevertheless, an understanding of the principles and 

familiarity with performance metrics (figure of merits, 

FOM) and statistics related to analytical results are of 

great importance in assessing the effectiveness and 

validity of the outcomes. The free accessible software 

MVC1 is a highly valuable toolbox for multivariate 

linear and nonlinear calibrations, developed by the 

group of Professor Alejandro Olivieri [6,7]. This 

software provides unique reporting of performance 

metrics employed by the method and statistics related 

to result validity. 

This research aims to provide a practical application 

of the statistics offered by the MVC1 software for a 

deeper understanding. The practical utility of this 

software is demonstrated in solving a real-world 

problem: the quantification of the percentage of 

adulteration of hazelnut oil in extra virgin olive oil 

using Raman spectroscopy and multivariate calib-

ration method Partial Least Squares Regression 

(PLSR). The choice of this problem is twofold, 

considering both the significance of detecting 

adulteration in food products and as an illustrative 

case for an in-depth and descriptive examination of the 

application of the PLSR machine learning tool within 

the computational package MVC1. This study seeks to 

showcase how the practical functionalities of the 

software can be harnessed effectively. The main 

MVC1 screen has been shown in Figure 1, that is the 

interface between the users and the coded algorithm to 

do first order multivariate calibration. 
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Figure 1- Main MVC1 screen for first order multivariate calibration 

3.2. Quantifying hazelnut oil adulteration in 

extra virgin olive oil with Raman spectroscopy 

and machine learning 

Determining the percentage of adulteration of 

hazelnut oil in extra virgin olive oil through Raman 

spectroscopy and machine learning methods holds 

significant importance in the realm of food 

authenticity and safety. The adulteration of extra 

virgin olive oil with lower-cost alternatives is a 

prevalent issue in the food industry. Detecting such 

adulteration is vital not only for ensuring the 

integrity and quality of olive oil but also for 

safeguarding consumer health. Raman spectros-

copy, with its capability to provide molecular 

fingerprinting, offers a powerful tool for identifying 

subtle variations in oil composition. When coupled 

with machine learning techniques like Partial Least 

Squares Regression (PLSR), it becomes possible to 

quantify adulteration levels accurately. This research 

not only serves as a practical example of applying 

advanced analytical methods to a pressing real-world 

problem but also contributes to the broader efforts to 

maintain the authenticity and purity of food products 

in the market. 

To train the PLS machine learning model effectively, 

a representative set of samples, referred to as the 

calibration or training set, is required. This set should 

consist of extra virgin olive oil samples with varying 

levels of hazelnut oil adulteration, ranging from 0% to 

60%. In Figure 2a, spectra of 20 samples with different 

degrees of olive oil adulteration are presented. Each 

sample's Raman spectrum comprises 731 recorded 

Raman shift values. Additionally, 13 independent 

samples with percentage of adulteration in the 
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calibration set's range are shown in Figure 2b. 

These independent samples are reserved for the 

final testing of the model's performance in quanti-

fying the adulteration percentage in samples not 

involved in the model's training process. 

Prior to entering the calibration model process, data 

can undergo preprocessing to prepare it for machine 

learning, making the relevant information regarding 

adulteration percentage more accessible to the 

model. These preprocessing steps can sometimes 

lead to simpler calibration models by eliminating or 

reducing the impact of signal components with weaker 

connections to the desired response (in this case, the 

percentage of impurity adulteration). Various methods 

are employed for this purpose. In Figures 2c and 2d, 

Raman spectra of the calibration and test sets after 

applying mean centering preprocessing on the 

measured signals in each Raman shift value are 

depicted. 

 

Figure 2- Raman spectra of adulterated extra virgin olive oil samples with hazelnut oil; a) raw calibration set, b) 

raw test set, c) mean centered calibration set, and d) mean centered test set. 

Mean centering preprocessing, from a computa-

tional standpoint, is straightforward. The Raman 

spectroscopic data matrix essentially contains the 

Raman spectra of each sample arranged in rows of 

the data matrix. In this matrix, each column 

represents the variations in the Raman signal at a 

specific wavelength for all samples. To apply mean 

centering preprocessing, the mean of the Raman 

signals in each column is subtracted from every 

signal in that column. This process can eliminate 

the influence of constant values at each wavelength, 

such as background signals, and sometimes result in 

the creation of simpler and more interpretable 

calibration models. As it can be shown in the 

preprocessed data in Figures 2c and 2d, negative 

values appear. 

The MVC1 software, initially developed for first-

order multivariate calibration, made its debut in the 

public domain as a MATLAB graphical user interface 

(GUI) and was first documented in a research paper 

a) 

b) 

c) 

d) 

29 



Food fraud and multivariate calibration Vali Zade 

Human, Health and Halal Metrics; 2023: 4(2) 

 

 

[6]. This release marked an enhancement of an 

earlier version, which was originally a Visual Basic 

program. The most recent MATLAB-based 

iteration of MVC1 is readily accessible for users 

and can be freely obtained at http://www.iquir-

conicet.gov.ar/descargas /mvc1.zip. Furthermore, 

an independent, compiled version of the software is 

also available, eliminating the need for MATLAB 

installation on the user's computer. You can access 

this stand-alone version through the following link: 

https://www.dropbox.com/sh/nruf3lp0ge1gbww/A

AAj6r97UBMIhgQmukRGYFPKa?dl1⁄40. 

The MVC1 software was utilized, and the necessary 

steps for performing PLSR calibration were 

executed. 

3.3. One-Leave-Out cross validation 

The determination of the number of PLS factors 

plays a crucial role in defining the complexity of the 

training model, and it is essential to find the optimal 

model. To achieve this, a one-leave-out cross-

validation procedure is employed. In this cross-

validation process, the number of PLS factors is 

systematically adjusted by iteratively excluding one 

training sample at a time and using the remaining 

samples for constructing the latent factors and 

regression. Subsequently, the predicted concent-

rations are compared with the actual concentrations 

for each calibration sample, and the predicted error 

sum of squares (PRESS = Σ(Cactual - Cpredicted)²) is 

computed. Within the MVC1 software, there is a 

dedicated option for specifying the maximum number 

of factors to be evaluated. 

Following the completion of the cross-validation 

procedure, the ideal number of factors for prediction 

purposes is determined based on the Haaland and 

Thomas [8] criterion, which relies on the F significant 

test. Once the one-leave-out cross-validation algo-

rithm concludes, several statistical parameters are 

computed as a function of the number of retained 

factors. These parameters include the Prediction 

Residual Error Sum of Squares (PRESS), the Root 

Mean Square Error of Cross-Validation (RMSECV), 

the Relative Error of Cross-Validation (RECV%, 

calculated as RMSECV divided by the average 

concentration of the mean parameter of interest in the 

training samples), and the correlation coefficient 

between actual and predicted concentrations (R²). 

Additionally, a built-in feature for outlier detection is 

available to facilitate this crucial task. 

Figure 3 illustrates the results of applying MVC1 to 

determine the appropriate number of factors (latent 

vectors) in the PLS model based on one leave-out 

cross-validation algorithm. In this dataset, at this stage 

five factors have created a model that minimizes the 

PRESS value. The software also provides a loga-

rithmic plot to visualize changes in PRESS, parti-

cularly when the scales of variations are significantly 

different. This graphical representation aids in 

understanding the model's performance. 
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Figure 3- MVC1 graphic for CV results, a), b) PRESS and log(PRESS) as a function of number of latent vectors, 

c) graphical representation of F-test for outlier detection in calibration set, and d) predicted vs. nominal 

concentration in CV. 

3.4. Outlier detection 

In multivariate calibration for prediction, an outlier 

refers to a data point that significantly deviates from 

the expected or normal behavior of the dataset. 

Outliers can be caused by errors, noise, or 

irregularities in the data. Outlier detection is the 

process of identifying and flagging these data 

points to prevent them from adversely affecting the 

accuracy and reliability of the calibration model. 

Detecting and handling outliers is crucial because 

they can distort the relationship between the 

measured variables and the property of interest, 

potentially leading to incorrect predictions. 

Effective outlier detection techniques help ensure 

that the multivariate calibration model provides 

robust and accurate results. 

The MVC1 software conducts an outlier detection 

test for both calibration and prediction samples. 

This test is based on assessing the significance of F 

statistics. It involves calculating the variance of the 

residuals derived from the reconstruction of the 

spectral data of a test sample using a PLS model, and 

comparing it to the variance of residuals from all 

calibration samples. More precisely, the experimental 

Fexp value is computed using the following equation: 

𝐹𝑒𝑥𝑝 =
𝐼 ∑ 𝑒𝑗

2𝐽
𝑗=1

∑ ∑ 𝑒𝑖𝑗
2𝐼

𝑖=1
𝐽
𝑗=1

 

In this equation, I represents the number of calibration 

samples, ej is the element of the residual vector e = x - 

xA for the specific test sample at wavelength j, and eij 

corresponds to the spectral residues at wavelength j for 

calibration sample i. Fexp is then compared to the 

critical Fcrit value with I and I * J degrees of freedom 

to determine significance. 

In case the calculated F value is smaller than the 

critical F value, it implies that the null hypothesis is 

accepted, and the test sample is not considered an 

outlier. The MVC1 software simplifies outlier 

detection by reporting the ratio of the calculated F 

value to the critical F value for each sample (when the 

test sample did not participate in the calibration model 

a) b) 

c) 
d) 
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creation). If this ratio is greater than 1, it indicates 

the presence of an outlier. As shown in Figure 3c, 

during the cross-validation phase, sample number 

15, as indicated in the bar plot, is identified as an 

outlier. By performing this analysis, the MVC1 

software advises users to remove any potential 

outlier sample from the calibration set before 

proceeding with the calibration process. 

During the calibration phase, when creating a 

calibration model for the mixture of extra virgin olive 

oil and hazelnut oil, using four PLS factors, sample 15 

was identified as an outlier. Consequently, the 

optimization of the number of model factors was 

carried out after excluding the outlier sample. 

Ultimately, as depicted in Figure 4, a five-factor 

calibration model is constructed without any outliers 

in this dataset. The prediction results for the test set 

can be observed in Figure 5. 

 
Figure 4- MVC1 graphic for CV results after removing the sample 15 from calibration set; a) and b) PRESS and 

log(PRESS) as a function of number of latent vectors, c) graphical representation of F-test for outlier detection 

in calibration set, and d) predicted vs. nominal concentration in CV 

 
Figure 5- MVC1 output for prediction the test set; a) predicted vs nominal concentration (red line represents the 

ideal calibration curve), and b) elliptical confidence region obtained by EJCR test for assessing accuracy and 

precision of the model 

a) b) 

c) d) 
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3.5. Statistic parameters 

The reported statistical parameters for calibration 

models, play a vital role in assessing the 

performance and reliability of these models. These 

parameters are crucial in gauging the effectiveness 

of calibration models, ensuring the quality of 

analytical results, and enabling informed decision-

making in various applications, including quality 

control and product testing. 

MVC1 software provides a comprehensive list of 

statistical parameters for evaluating the constructed 

calibration model (Figure 6). These parameters are 

essential tools for users to thoroughly assess the 

model's performance. They include metrics that 

gauge the quality of predictions and the model's 

ability to handle complex data. In the following, a 

concise explanation of these key parameters will be 

provided. 

 
Figure 6- MVC1 statistics output optimized PLS 

model for prediction the percentage of adulteration 

in extra virgin olive oil 

3.6. Root Mean Square Error in Prediction 

(RMSEP) 

RMSEP is a statistical metric used to assess the 

performance of a calibration model in predicting 

the concentration or values of an analyte in 

unknown samples. RMSEP quantifies the accuracy 

of these predictions by measuring the average 

magnitude of the differences between the predicted 

values and the actual observed values. A lower 

RMSEP indicates a more accurate model, while a 

higher RMSEP suggests less accuracy in the 

predictions. RMSEP is a valuable parameter for 

evaluating the predictive power of a calibration model 

in various applications. RMSEP calculated according 

to: 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦𝑛𝑜𝑟𝑚,𝑛 − 𝑦𝑝𝑟𝑒𝑑,𝑛)

2𝑁𝑣𝑎𝑙
𝑛=1

𝑁𝑣𝑎𝑙
 

where Nval is the number of validation samples, ynom,n 

is the nominal concentration of analyte n in the 

validation samples, and ypred,n is the predicted 

concentration in the same samples. 

3.7. Relative Error of Prediction (%REP) 

%REP is calculated as the ratio of the Root Mean 

Square Error in Prediction (RMSEP) to the mean 

concentration of the analyte within the calibration 

dataset. 

𝑅𝐸𝑃 = 100
𝑅𝑀𝑆𝐸

〈𝑦〉
 

In simpler terms, it evaluates how well the calibration 

model's predictions match the true values of the 

analyte. A lower %REP indicates that the model's 

predictions are closer to the actual concentrations, 

signifying better predictive performance. Conversely, 

a higher %REP implies a larger discrepancy between 

predictions and true values, suggesting reduced 

predictive accuracy. 

This parameter is indispensable in analytical chemi-

stry because it helps researchers and analysts assess 

the reliability and precision of calibration models, 

ensuring that they produce trustworthy and accurate 

predictions, ultimately leading to more robust and 

effective analytical methods. By understanding and 

monitoring %REP, one can fine-tune calibration 

models and optimize their performance for various 

applications. 

3.8. R-Squared (correlation coefficient) R2 

R2 is a statistical measure that represents the propor-

tion of the variance in the dependent variable 

(concentration) that can be explained or accounted for 

by the independent variables (e.g., spectral data). R2, 

ranges from 0 to 1, where: 

- R2 = 0 means that none of the variance in the 

dependent variable is explained by the independent 

33 



Food fraud and multivariate calibration Vali Zade 

Human, Health and Halal Metrics; 2023: 4(2) 

 

 

variables, indicating a poor model fit. 

- R2 = 1 means that all of the variance in the 

dependent variable is explained by the independent 

variables, indicating a perfect model fit. 

In calibration modeling, a higher R2 value generally 

indicates a better fit of the model to the data, 

suggesting that the independent variables (e.g., 

spectral data) can explain a significant portion of 

the variance in the dependent variable (e.g., 

chemical concentrations). It's an essential para-

meter for assessing the quality and reliability of 

calibration models, as it quantifies how well the 

model captures the relationship between variables. 

3.9. Explained variance 

Explained variance in the context of calibration 

modeling refers to the portion of the total variance 

in both the independent variable (X, usually 

spectral data) and the dependent variable (Y, often 

analyte concentrations) that is accounted for by the 

calibration model. In other words, it quantifies how 

well the model captures the relationships between 

the measured spectral information (X) and the 

actual concentrations of analytes (Y).  

For the independent variable X, explained variance 

assesses how much of the spectral variability is 

effectively utilized by the model to predict the 

dependent variable Y, such as analyte concent-

rations. Higher explained variance in X suggests 

that the model efficiently extracts relevant spectral 

information for prediction.  

Similarly, for the dependent variable Y, explained 

variance measures the proportion of the variance in 

analyte concentrations that is accurately predicted 

by the calibration model. A higher explained 

variance in Y indicates that the model can 

effectively estimate the analyte concentrations. In 

calibration, maximizing the explained variance in 

both X and Y is a key objective to ensure the 

model's accuracy and reliability in predicting 

analyte concentrations based on spectral data. The 

explained variance in the context of calibration 

modeling can be calculated using the following 

equation: 

Explained Variance (EV) = 1 – [(Residual 

Variance (RV)) / (Total Variance (TV))] 

Where: 

- EV represents the explained variance. 

- RV represents the residual variance, which is the 

variance of the differences between the observed 

values and the predicted values (the errors). 

- TV represents the total variance, which is the 

variance of the observed values. 

The explained variance (EV) is a value between 0 and 

1, where a higher value indicates that the model can 

explain a larger proportion of the total variance in the 

data, implying a better fit of the model to the data. 

3.10. Durbin–Watson statistical test 

Various tests have been proposed in the scientific 

literature to explore whether there are non-linear 

relationships between multiple variables and concent-

rations [9]. One straightforward approach is to begin 

by constructing a PLS-1 model using the ideal number 

of latent variables. This model predicts the con-

centration of the substance of interest in a group of 

validation samples. If the system behaves non-

linearly, the prediction errors will display noticeable 

correlations when organized based on increasing 

predicted concentration values. 

To accurately identify these correlations and avoid any 

misleading visual cues, the Durbin-Watson statistical 

test, introduced by Durbin and Watson in 1950, is 

applied. The test calculates the Durbin-Watson 

indicator (DW), which is defined as: 

𝐷𝑊 =  
∑ (𝑟𝑛+1 − 𝑟𝑛)2𝑁𝑣𝑎𝑙−1

𝑛=1

∑ 𝑟𝑛
2𝑁

𝑛=1

 

Here, rn represents the prediction residue at the nth 

position. A high DW value suggests uncorrelated 

residuals, as it results from a significant number of 

differences between positive and negative values. In 

contrast, correlated residuals lead to a low DW value, 

as they generate series of both positive and negative 

values with relatively few differences between 

consecutive residues. To make a statistical judgment 

about these DW values, there is an associated 

probability 'p'. When 'p' is less than 0.05, the null 

hypothesis (indicating uncorrelated residuals) is 
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rejected, signaling the presence of correlations 

among residuals, and vice versa. 

After the calibration model is constructed and its 

validation based on statistical parameters is 

completed, the model can be used to predict an 

independent set (the test set) to assess its predictive 

capabilities. MVC1 software provides useful 

graphical metrics in the test set, as shown in Figure 

5, for predicting the test set of hazelnut oil 

adulteration in extra virgin olive oil. In this figure, 

two plots illustrate the predicted concentration 

values for hazelnut oil impurity in 13 test samples 

relative to their actual concentrations (left plot). 

Another unique feature in the MVC1 software is the 

drawing of EJCR plot (right plot in Figure 5), which 

requires further explanation. 

When dealing with a broad range of analyte 

concentrations in test samples where constant 

variance cannot be assumed, it is advisable to 

employ linear regression by plotting predicted 

values against nominal analyte concentrations. The 

assessment of these results should not merely 

revolve around determining if the ideal conditions 

of a unit slope and zero intercept fall individually 

within their respective confidence intervals around 

the means. Instead, a more robust approach is the 

elliptical joint confidence region (EJCR) test, 

which entails the creation of an EJCR for both the 

slope and intercept within the linear plot mentioned 

earlier. This test involves scrutinizing whether the 

ideal point (with slope of 1 and intercept of 0) lies 

within the boundaries of the ellipse, thus providing 

a more comprehensive evaluation of the linear 

regression model's performance. The EJCR plot in 

Figure 5 shows relatively a good prediction model 

of adulteration modeling in extra virgin olive oil.  

In the realm of analytical chemistry, figures of merit 

emerge as crucial quantitative parameters, serving 

as indispensable tools for characterizing and 

benchmarking the performance of analytical 

techniques. These metrics are meticulously tailored 

to specific analytical methodologies, enabling 

scientists and researchers to evaluate the precision, 

accuracy, and reliability of various approaches. 

Figures of merit play a pivotal role in guiding the 

selection of the most appropriate analytical methods 

for specific applications, ultimately contributing to the 

quality and robustness of analytical data. Moreover, 

they facilitate the objective comparison of different 

techniques, ensuring that the chosen methodology 

aligns with the analytical goals of the study. In this 

field, figures of merit are instrumental in driving 

advancements in analytical chemistry, leading to more 

accurate and effective analytical processes and 

outcomes. 

The MVC1 toolbox performs the calculation of figures 

of merit for PLS regression, as illustrated in Figure 7. 

These figures of merit serve as a comprehensive 

performance evaluation for quantifying adulteration in 

extra virgin olive oil with hazelnut oil. To enhance 

clarity, concise explanations for each of these terms 

will be provided. 

 
Figure 7- Calculated Analytical Figures of Merit for 

PLSR modeling of Raman spectra vs Hazelnut 

adulteration in extra virgin olive oil 

In the realm of analytical chemistry, sensitivity often 

takes the form of an inverse relationship with the 

length of the regression coefficients vector. This 

relationship signifies the method's ability to detect and 

respond to subtle changes in the input signals, 

typically representing concentration or specific 

measurement values. 

A critical aspect to understand about sensitivity is that 

its units are represented as (signal × concentration-1). 

This implies that the parameter's value depends on the 

type of signal being measured. Consequently, 
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sensitivity remains intricately tied to the specific 

attributes of the signals in question. The challenge 

arises when one attempts to directly compare 

different analytical techniques. These techniques 

often rely on entirely distinct types of signals, and 

their sensitivity values can vary significantly due to 

the signal-related units. Consequently, using 

sensitivity as a universal benchmark for comparing 

analytical techniques with diverse signal bases may 

prove inefficient. Thus, while sensitivity remains a 

valuable metric within its respective context, a 

more versatile yardstick is often required when 

evaluating techniques based on widely different 

types of signals. 

Analytical sensitivity, denoted as γ, is a useful 

parameter that helps us understand sensitivity in 

analytical methods. It's valuable because it 

considers the specific type of signal used in 

calibration models. This means that sensitivity can 

vary between methods based on different signals, 

making direct comparisons challenging. γ, on the 

other hand, is a better choice for comparisons 

because it's calculated in a way that makes it more 

consistent and easier to understand. 

Limit of detection (LOD) serves as a critical 

parameter in analytical chemistry and can be 

computed using a formula that takes into account 

both type I and type II errors. Specifically, it is 

estimated as: 

LOD = 3.3 s0 

Here, s0 represents the standard error in the 

concentration of an analyte in a sample that is free 

from the analyte of interest. The value "3.3" 

corresponds to the probabilities for type I (α) and 

type II (β) errors, set at 0.05. However, it's 

important to note that the LOD is influenced by the 

concentrations of other components within a given 

sample. Additionally, to calculate LOD, it is 

necessary to estimate standard error in the predicted 

analyte concentration for a blank sample (s0). 

In the context of multivariate analysis, the blank 

samples can be variable, leading to a range of blank 

leverages. Consequently, this results in a spectrum 

of detection limits, ranging from a minimum LOD 

(LODmin) to a maximum LOD (LODmax). This 

approach acknowledges the variability in the blank 

samples and provides a range that of LOD values, 

which is particularly useful for analytical assessments 

in situations where the blank samples can differ 

significantly [10]. 

Limit of quantitation (LOQ), a crucial parameter in 

analytical chemistry, is the analyte concentration at 

which the relative prediction error is limited to a 

maximum of 10%. Much like the limit of detection 

(LOD), LOQ can be calculated based on the same 

principles and assumptions. Using the following 

equation: 

LOQ = 10 s0 

Here, s0 still represents the standard error in the 

concentration of the analyte in a sample that is free 

from the analyte of interest. This equation allows us to 

determine the point at which analytical measurements 

become sufficiently precise for quantifying the analyte 

with a relative error of no more than 10%. Under-

standing both the LOD and LOQ is vital in analytical 

chemistry, as they establish the lower limits for 

reliable detection and quantification of analytes, 

ensuring the accuracy and precision of analytical 

results. 

4. Conclusion 

This contribution has demonstrated the practical 

application of the MVC1 software in quantifying 

hazelnut oil adulteration in extra virgin olive oil using 

Raman spectroscopy and PLS regression. The study 

emphasized the importance of figures of merit in 

analytical chemistry, discussed the concept of 

analytical sensitivity (γ), and introduced LOD and 

LOQ as crucial parameters. The MVC1 software 

proved to be a valuable tool for constructing a robust 

PLSR calibration model. It simplified key steps like 

outlier detection and determination of optimal factors. 

The study showcased the significance of sensitivity 

and analytical sensitivity for understanding signal-

response relationships. By combining software tools, 

advanced analytical techniques, and a thorough under-

standing of figures of merit, this research addresses the 

critical issue of food authenticity and safety. It 
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highlights the role of performance metrics in 

evaluating analytical methods and contributes to the 

advancement of analytical chemistry for ensuring 

the quality of food products. 
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