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Abstract 

Background and objective: Graphene oxide has been extensively used in theranostics due to its drastic 

properties, biocompatibility, and chemical stability. Graphene has a large surface area and provides 

enough space for loading of anticancer drugs. In our study, a novel thermo-and pH-responsive graphene-

containing nanocomposite was synthesized for methotrexate (MTX) delivery into cancer cells. 

Materials and methods: Triblock copolymer of poly[(2-hydroxyethylmethacrylate)-b-(N-isopropyl-

acrylamide)-b-(dimethylaminoethyl methacrylate)] abbreviated as poly(HEMA-b-NIPAM-b-DMAEMA) 

was prepared by reversible addition fragmentation chain-transfer (RAFT) polymerization. The triblock 

copolymer was attached onto the surface of graphene oxide nanoparticles via carboxylic groups of 

graphene oxide. Structure of poly(HEMA-b-NIPAM-b-DMAEMA) was studied by Fourier transform 

infrared (FT-IR) spectroscopy and Proton nuclear magnetic resonance (
1
HNMR). Morphology of the 

nanocomposite was studied by field emission scanning electron microscope (FESEM) and its thermo-

responsive behavior was investigated by lower critical solution temperature (LCST), dynamic light 

scattering (DLS), and thermogravimetric analysis (TGA). Polydispersity index (PDI) was evaluated by 

gel permeation chromatography. pH-responsive behavior of the nanocomposite was also studied by 

evaluation of MTX release from the structure at pH 5.4 and 7.4 in the laboratory. 

Results and conclusion: Graphene oxide/poly(HEMA-b-NIPAM-b-DMAEMA) has a sheet-like struc-

ture with average  thickness of 55.6 nm. The triblock chains successfully covered graphene oxide. 

Characterization of poly(HEMA-b-NIPAM-b-DMAEMA) resulted in Mn = 26875 g,  MW = 33862 g, and 

PDI = 1.26. Encapsulation efficiency of the structure was 91% for MTX. Release rate of MTX from the 

graphene nanocomposite was pH-dependent. In a buffer solution, release rate of 31.2% was achieved at 

pH 7.4 and temperature of 37 °C after 150 h. In comparison, release rate of 52.4% was calculated for pH 

5.4 after 150 h at the same temperature. Therefore, the synthesized graphene nanocomposite is an 

appropriate candidate as a carrier of anticancer drugs in treatment of cancer cells. 
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1. Introduction 

Nanomedicine is an interesting filed in the world 

due to its multi-functionality and targetability as 

well as its potential to overcome multi-drug 

resistance and also entrap the poorly soluble 

drugs [1,2]. In this regard, graphene and its 

derivatives such as graphene oxide (GO) are of 

the most interested candidates because of their 

specific physicochemical and biological charac-

teristics [3-5] 

In GO, carbon atoms bond together in a honey-

comb lattice, in which oxygen-containing func-

tional groups are attached to the backbone to 

form a two-dimensional structure [6,7]. Graphite 

oxidation is the common way of GO synthesis. 

Excessive oxidation results in oxygen-contain-

ing functional groups on the structure. Graphene 

has large surface area that provides desired 

space for loading of anticancer drugs. In addi-

tion, GO is well-loaded with anticancer drugs 

classified as aromatic medicines [8-10]. 

Presence of oxygen-containing functional gro-

ups in the structure is desirable for delivery of 

anticancer drugs because of their active involve-

ment in chemical reactions [11,12]. The basal 

planar structure of GO and its high surface area 

with sp
2
 domain result in its high loading 

capacity, biocompatibility, and solubility. Sim-

ple chemical or physisorption conjugation can 

be used in synthesis of multimodal GO by con-

jugation of proteins, polymers, and biomol-

ecules to GO structure [13]. GO has been stu-

died for delivery of several drugs because it has 

a large hydrophobic area able to load hydro-

phobic drugs via non-covalent adsorption driven 

by π-π stacking and interaction with aromatic 

compounds [14-16]. Drug loading in GO is 

occurred at low temperatures, which allows 

loading of temperature sensitive formula [17]. 

Poly(N-isopropylacrylamide) (PNIPAM) has 

been used as a thermo-responsive copolymer 

[18-21]. It has a cloud point (or lower critical 

solution temperature; LCST) of 32 °C [22-25]. 

PNIPAM copolymers are interested in pharma-

ceutical applications. Local hyperthermia that is 

important in nanomaterials target cancer cells 

after release of their loaded drug could be 

achieved by PNIPAM copolymers [26-28].  

In this study, our objective was development of 

a simple way for synthesis of stimuli-responsive 

magnetic nanocomposite able to diagnose and 

treat cancer cells simultaneously. Copolymer of 

poly(2-hydroxyethylmethacrylate-b-N-

isopropylacrylamide-b-N,N-

dimethylaminoethylmethacrylate) abbreviated as 

poly(HEMA-b-NIPAM-b-DMAEMA) was synt-

hesized by reversible addition fragmentation 

chain-transfer (RAFT) polymerization. Synthe-

sized GO was attached to poly(HEMA-b-

NIPAM-b-DMAEMA) via covalent bond. Char-

acteristics of the graphene nanocomposite were 

studied in the laboratory. Release kinetic of 

methotrexate from the structure was also studied 

under in vitro trial. 

2. Materials and methods  

2.1. Materials 

RAFT agent of 4-cyano-4-[(phenylcarbothioyl) 

sulfanyl] pentanoic acid was synthesized in the 

laboratory [30]. 2-hydroxyethyl methacrylate 

(HEMA, 98%), N,N-dimethylaminoethyl meth-

acrylate (DMAEMA, 97%), N-isopropyl-acryl-

amide (NIPAM, 97%), graphite, sodium nitrate, 

potassium permanganate, and sulfuric acid were 

purchased from Merck, Germany. Initiator of 

2,2-azobisisobutyronitrile (AIBN) was obtained 

from Fluka company (Switzerland). 

2.2. Synthesis of poly(HEMA) and poly (HE 

MA-b-NIPAM) 

Poly(HEMA), as one of macro-RAFT agents, 

was synthesized according to Scheme 1 [31]. 

Poly(HEMA-b-NIPAM) was further synthesized 

by using poly(HEMA) as macro-RAFT agent 

and NIPAM monomer [32].  

2.3. Synthesis of poly(HEMA-b-NIPAM-b-

DMAEMA) triblock copolymer  

Macro-RAFT agent of P(HEMA-b-NIPAM) (1.8 

g, 0.1 mmol), AIBN (2.5 mg, 0.015 mmol), 

DMAEMA monomer (2 g, 12.7 mmol), and 

dimethylformamide (DMF) (15 ml) were added 

to a reactor. The mixture was degassed and 

refluxed at 75 °C for 30 h. Then, the reactants 

were precipitated in cold diethyl ether (100 ml). 
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The synthesized triblock copolymer was finally 

filtrated and dried under vacuum at room 

temperature (Scheme 1). 

2.4. Synthesis of GO 

GO was prepared by oxidation of graphite 

powder. Sodium nitrate (1.5 g), sulfuric acid 

(135 ml), and graphite powder (4 g) were added 

to a 250-ml flask and stirred for 50 min at 25 °C. 

Then, potassium permanganate (14 g) was 

slowly added to the flask and the mixture was 

stirred at 35 °C for 8 h. In the next step, the 

content was diluted by 700 ml deionized water 

followed by addition of 35 ml H2O2 to reduce 

unreacted potassium permanganate. The final 

mixture was centrifuged (7000 rpm, 20 min), 

and the precipitate was washed with 0.1 M 

hydrochloric acid and distilled water to reach pH 

 7. At the end, GO was dried at 65 °C under 

vacuum. 

2.5. Synthesis of graphene/poly(HEMA-b-

NIPAM-b-DMAEMA) nanocomposite 

500 mg poly(HEMA-b-NIPAM-b-DMAEMA) 

copolymer and 30 ml GO solution (300 mg GO 

dissolved in 10 ml DMF) were mixed. Then, the 

mixture was heated at 60 °C for 3.5 h under 

stirring. GO/poly(HEMA-b-NIPAM-b-DMAEM 

A) dispersion was centrifuged at 6000 rpm for 

10 min and the precipitate was dried under vac-

uum at room temperature for 24 h (Scheme 1). 
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Scheme 1- Synthesis of A) poly(HEMA-b-NIPAM-b-DMAEMA) copolymer, and B) GO/poly(HEMA-b-

NIPAM-b-DMAEMA) nanocomposite 

2.6. Preparation of MTX-loaded GO/poly 

(HEMA-b-NIPAM-b-DMAEMA) 

nanocomposite 

Drug-loaded nanocomposite was prepared by 

membrane dialysis method. For this, 200 mg 

nanocomposite was dispersed in 5 ml dimethyl 

sulfoxide and treated by ultrasound waves at 1.5 

Hz frequency at 25C. Then, 20 mg MTX was 

added to the solution and stirred for 45 h in 

darkness. Final solution was moved into a 

membrane bag and dialyzed against 250 ml 

deionized water for 2 days. Then, MTX-loaded 

nanocomposite was centrifuged at 6000 rpm for 

15 min to be separated. UV-Vis absorbance of 

MTX-loaded nanocomposite was measured at 

290 nm to ensure of encapsulation. 

2.7. Characterization 

Size exclusion analysis was carried out by gel 

permeation chromatography (GPC) (Waters 

1515, USA) equipped with isocratic pump 

(Breeze 1515) and manual injector (7725). 

Fourier transform infrared (FT-IR) spectro-

photometer (Shimadzu 8101M, Kyoto, Japan) at 

wavenumber ranges of 4000 to 400 cm
–1 

was 

used for investigation of chemical interactions. 

Proton nuclear magnetic resonance (
1
HNMR) 

spectra were obtained at 400 mHz at 25 °C by 

Bruker spectrometer (Ettlingen, Germany). For 

this, the samples were prepared in deuterated 

dimethyl sulfoxide solvent (DMSO-d6). UV-Vis 

spectra were obtained by Shimadzu 1650 PC 

UV-Vis spectrophotometer (Kyoto, Japan). Size 

of nanocomposites was measured by laser-

scattering technique (Zetasizer Nano ZS90, 

Malvern, UK) at 25, 35, and 45 °C. Field emi-

ssion scanning electron microscope (FESEM) 

(model 1430 VP, UK) was used for deter-

mination of the nanocomposites’ morphology. 

For this, the samples were spread on a SEM stub 

and coated with gold before analysis.  

3. Results and discussion 

3.1. Characterization of poly(HEMA-b-NIP 

AM-b-DMAEMA) copolymer 

FT-IR and 
1
HNMR spectra of poly(HEMA-b-

NIPAM-b-DMAEMA) are shown in Figures 1 

and 2. Main bands in FT-IR spectra are vibration 

of stretching C–O at 1392 cm
−1

, stretching 

carbonyl at 1734 cm
−1

, bending C–H at 1471 

cm
−1

, stretching C–O–C at 1177 cm
−1

, and 

stretching hydroxyl at 3502 cm
−1

 [31,32]. 

Synthesis of poly(HEMA-b-NIPAM-b-DMA 

EMA) was approved by chemical shifts at 2.93, 

3.22, and 4.1 ppm, which were related to N–

(CH3)2 protons, N-CH2, and O-CH2 [33] of 

poly(DMAEMA) segments. All the chemical 

shifts are addressed in 
1
HNMR spectra of the 

triblock copolymer (Figure 2).  

Gel permeation chromatogram of poly(HEMA-

b-NIPAM-b-DMAEMA) is shown in Figure 3. 

Number average molecular weight (Mn)= 26875, 
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average molecular weight (MW) = 33862, and 

polydispersity index (PDI) = 1.26 were achieved 

by GPC, and Mn = 22944 was achieved by 
1
HNMR for poly(HEMA-b-NIPAM-b-DMAE 

MA). The triblock copolymer synthesized by 

RAFT polymerization had relatively low PDI, 

which shows the good performance of RAFT 

technique in this regard. 

 

Figure 1- FT-IR spectra of poly(HEMA-b-NIPAM-b-DMAEMA) triblock copolymer; FT-IR spectra of 

PHEMA and PNIPAM were presented in our previous studies [31,32]. 

 

 

Figure 2- 
1
HNMR spectra of poly(HEMA-b-NIPAM-b-DMAEMA) triblock copolymer; 

1
HNMR spectra 

of PHEMA and PNIPAM were presented in our previous studies [31,32]. 
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Figure 3- Gel permeation chromatogram of poly(HEMA-b-NIPAM-b-DMAEMA) triblock copolymer 

3.2. Characterization of nanocomposite 

FESEM images of GO and GO/poly(HEMA-b-

NIPAM-b-DMAEMA) nanocomposite are pres-

ented in Figure 4. The synthesized GO had 

sheet-like structure in 25 nm thickness with 

smooth surface containing small wrinkles. GO/ 

poly(HEMA-b-NIPAM-b-DMAEMA) nanoco-

mposite had thickness of 50.66 nm and also 

wrinkled surface. According to the figure, poly 

(HEMA-b-NIPAM-b-DMAEMA) chains succe-

ssfully covered GO nano-sheets. 

 

(A) (B) 

Figure 4- Field emission scanning electron microscope images of A) synthesized GO, and B) 

GO/poly(HEMA-b-NIPAM-b-DMAEMA) nanocomposite  

Poly(N-isopropylacrylamide) (PNIPAM) is a 

reversible temperature-responsive polymer, whi-

ch has a low critical solution temperature 

(LCST) of 32 C [26]. It is well-known that 

PNIPAM-containing copolymers show tunable 

phase transition behavior that is interested in 

biomaterials’ application [33]. LCST behavior of 

aqueous solution of the copolymers was studied by 

UV-Vis transmission spectrum. According to 

Figure 5, LCST of 36-38 ℃ was observed for 

GO/poly(HEMA-b-NIPAM-b-DMAEMA) 

nanocomposite.  

6 
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Figure 5- Low critical solution temperature of GO/poly(HEMA-b-NIPAM-b-DMAEMA) nanocomposite  

Thermo-sensitivity of GO/poly(HEMA-b-NIP 

AM-b-DMAEMA) nanocomposite was evalu-

ated by dynamic light scattering (DLS). Particle 

size of the nanocomposite was also analyzed by 

DLS at three different temperatures. Average 

thickness of GO/poly(HEMA-b-NIPAM-b-DM 

AEMA) nanocomposite at 25, 35, and 42 ℃ was 

95, 135, and 110 nm, respectively (Figure 6). 

Importantly, particles size decreased to 66 nm at 

temperature above LCST (42 C) due to collapse 

of PNIPAM chains and shrinkage of the nano-

composite network [34,35]. 

 

 

Figure 6- Dynamic light scattering of GO/poly(HEMA-b-NIPAM-b-DMAEMA) nanocomposite at a) 25 

ºC, b) 35 ºC, and c) 42 ºC  

b 

c 

a 

7 



GO-containing nanocomposite for MTX delivery Ghamkhari 

Human, Health and Halal Metrics; 2021: 2(2)   

Thermal stability of GO and GO/poly(HEMA-b-

NIPAM-b-DMAEMA) nanocomposite was in-

vestigated by thermogravimetric analysis 

(Figure 7). Below 100 °C, 22.1% weight loss 

was calculated for GO due to evaporation of 

intercalated water molecules. Consequently, a 

two-step weight loss was observed. The first was 

36.4% in the range of 110–250 °C due to release 

of CO2, CO, and steam from the structure, and 

the second was 15.14% in the range of 250-350 

°C due to degradation of stable oxygens. In 

comparison, weight loss of the nanocomposite 

was about 6.3% below 140 °C due to 

evaporation of intercalated water molecules. 

Then, weight loss continued up to 37.18% of 

initial weight between 140-150 °C (Figure 7) 

which was related to release of CO2 and steam 

from GO. The nanocomposite degraded in the 

range of 150–500 °C. Final weight loss of 21% 

was calculated for GO/poly(HEMA-b-NIPAM-

b-DMAEMA) nanocomposite. Thermogravimet-

ry behavior of the nanocomposite confirmed the 

attachment of GO nano-sheet to P(HEMA-b-

NIPAM-b-DMAEMA) copolymer. 

 

Figure 7- Thermo-gravimetry curve of GO and GO/poly(HEMA-b-NIPAM-b-DMAEMA) nanocom-

posite 

3.3. MTX release from nanocomposite in vitro 

GO-containing nanocomposites have been com-

monly used in drug delivery because of their 

ability to target specific sites and appropriate 

size [36]. Our synthesized GO/poly(HEMA-b-

NIPAM-b-DMAEMA) nanocomposite had 

homogenous structure and there was no sign of 

aggregation. MTX was loaded in the nano-

composite by electrostatic interactions between 

carboxylate groups of MTX and protonated 

amine groups of the nanocomposite at pH 7.4. 

Release behavior of MTX from GO/poly 

(HEMA-b-NIPAM-b-DMAEMA) was studied 

in a buffer solution at 37 °C. Interestingly, rele-

ase rate was low (31.2%) at pH 7.4 after 150 h, 

while 52.4% of MTX released from the 

nanocomposite at pH 5.4 after 150 h (Figure 8). 

Indeed, amine groups of the nanocomposite and 

MTX are protonated under acidic condition. It 

further weakens π–π stacking followed by 

release of MTX from the structure. On the other 

hand, hydrogen bonds are dissociated at lower 

pH which leads to higher release of MTX in the 

system. Such behavior is interesting in cancer 

therapy because pH of cancer cells is lower than 

normal cells. Therefore, the synthesized GO 

nanocomposite can be considered as a candidate 

in cancer chemotherapy due to its high loading 

capacity and pH-dependent release behavior. 
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Figure 8- In vitro release of MTX from GO/poly(HEMA-b-NIPAM-b-DMAEMA) nanocomposite at 37 

°C 

4. Conclusion 

Graphene, sp2 hybridized carbon framework 

with one atom thickness, has manifold 

applications in electronics and fabrication of 

sensors, composites, and catalysts. In recent 

decades, it has been interested in biomedicine. A 

thermo- and pH-responsive graphene nano-

composite was developed to study its behavior 

for cancer therapy. Poly(HEMA-b-NIPAM-b-

DMAEMA) triblock copolymer was prepared by 

RAFT polymerization technique. GO was also 

synthesized by graphite oxidation. The triblock 

copolymer was attached to GO through 

interaction of its carboxyl groups with hydroxyl 

groups of GO. PDI of 1.26 was achieved for 

poly(HEMA-b-NIPAM-b-DMAEMA) after RA-

FT technique that it is a living free-radical 

polymerization. MTX was successfully loaded 

to the nanocomposite with encapsulation effici-

ency of 91%. Release rate of MTX from 

GO/poly(HEMA-b-NIPAM-b-DMAEMA) 

nanocomposite was relatively low at pH 7.4, 

while the release rate increased at pH 5.4. The 

synthesized nanocomposite can be studied 

further as a carrier of chemotherapy drugs in 

treatment of cancer cells which have lower pH 

than normal cells. 
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