

Review article

Journal of Human, Health and Halal Metrics; 2020, 1(1): 88-95 https://doi.org/10.30502/JHHHM.2020.230908.1017

Micronutrients in halal foods associated with improvement of the immune system against coronavirus

Naficeh Sadeghi^{1,2}, Mannan Hajimahmoodi¹, Seyyed Mohsen Asaadi^{1*}

1- Department of Drug and Food Control, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

2- Halal Research Center of IRI., Iran Food and Drug Administration, Ministry of Health, Tehran, Iran.

This paper is open acces	s under Creative Com	mons Attribution-NonComm	ercial 4.0 International license.
Submission	: 12 May 2020	<i>Revision</i> : 12 July 2020	Acceptance: 22 July 2020

Abstract

Background and objective: The novel coronavirus (COVID-19) pandemic has threated the health and economy across the world. In the absence of efficient medication for the virus, healthy diet can alleviate its symptoms. There are nutrients that may have beneficial effects against coronavirus. At this review, we discuss about the immune system modulation induced by some nutrients found in halal foods that may be effective to attenuate the viral infections such as COVID-19.

Results and conclusion: The origin of COVID-19 (meat of bat eaten by Chinese) approves that recommendations of Islam on Halal foods, which emphasizes the health and hygiene, should be addressed throughout the world. Several studies revealed that diet could affect the immune system. Some nutrients are anti-inflammatory and change the tight junctions in tissues. The antiviral food components may be useful in alleviation of COVID-19 infection. Therefore, keeping the micronutrients' balance might enhance the host response against viral infections. There is a global consensus that nutritional deficiency should be treated to reduce infections and a healthy halal diet consisting of special components like α -Lipoic acid, phytoestrogens, flavonoids, licorice root and black tea may be useful for improving the immune responses.

Keywords: Coronavirus, COVID-19, halal, health, immune system, nutritional interventions

1. Introduction

The concept of halal is considered as a kind of monitoring system for Muslims. In the current critical situation that high population of the world has been infected by zoonotic coronavirus, focusing on halal concept is helpful to bear the pandemic. In this regard, use of nutrients and nutraceuticals from halal sources would improve the immune system and health. The World Health Organization (WHO) announced the COVID-19 as a pandemic in March 2020 due to its widespread outbreak [1]. It killed thousands of people in China and the disease has quickly spread in China and other countries by human [2]. WHO reported the global rate of mortality by COVID-19 virus as 2.7% on 25 October 2020 [1]. Coronaviruses (CoVs) belong to subfamily of Orthocoronavirinae in family of Coronaviridae and order of Nidovirales. The subfamily includes α -coronavirus, β -coronavirus, and

^{*} Correspondence to: Seyyed Mohsen Asaadi ; e-mail: m-asaadi@razi.tums.ac.ir

 δ -coronavirus [3]. Coronaviruses primarily caused enzootic infections in birds and mammals but they have infected the humans in the last decades [4].

In the last 20 years, two coronavirus pandemics have occurred as of SARS-CoV evolved and spread in China and transferred to several countries, which led to approximately 8000 cases of infection and 800 deaths. In addition, MERS-CoV began in Saudi Arabia that led to about 2500 cases of infection and 800 deaths and it currently causes infection worldwide [5]. With regard to COVID-19 infection, there has been 50,266,033 infected cases and more than 1,254,567 deaths across the globe up to November 2020 [1]. As the number of infected patients is increasing dramatically every day, development of potential inhibitors against COVID-19 is necessary. There are various foods rich for bioactive compounds, of which some sources are halal and some others are inhibited for Muslims. Due to the adverse impact of non-halal foods on human which approved by several studies, all people should be educated about eating of halal foods that are free of notallowed components for Muslims [6,7]. As observed, the COVID-19 originated from bats that is not halal meat in Islam [8-10]. Therefore, other than supply of energy and providing the body requirement, food may be identified as source of diseases and deaths [11]. This review aimed to point out the nutrients found in halal foods that positively affect the immune system against viral infections within their recommended range.

2. Foods and their ingredients improving the body health and immune system

Several research majorly focuses on medicinal management of coronavirus diseases and little is known about their nutritional support. Nutritional intervention may recover the patients and attenuate their symptoms [12]. For instance, the Chinese scientists reported that nutritional support is a basic treatment and a part of multidisciplinary management of symptomatic SARS-CoV-2 affected patients [13]. As mentioned,

adequate intake of micronutrients enhance the host response and might protect body against viral infections. Nutritional deficiency is associated with weak immune responses particularly cell-mediated immunity, phagocyte function, cytokine production, secretory antibody response, antibody affinity, and the complement system [14,15]. Nutritional intervention may be effective in both primary and secondary prevention of infections at high-risk patients [16]. Therefore, a complete diet can provide the essential micronutrients and supplementation can be helpful if needed. Several studies have been done to find out the impact of food components in this regard [17-19] (Tables 1 and 2).

In the study of Lesourd, effect of protein and energy deficiency on immune response was monitored in undernourished adult patients. The treatment group received a complete supplement containing both macronutrients and micronutrients (trace elements). After tetanus vaccination, antibody responses were faster in those received nutritional supplement than control, which confirmed the positive impact of nourishing on adults [20]. In another study, some immunologic indexes were improved after ingestion of yogurt through a low calorie diet (1500 kcal/d) that showed the importance of calcium [18].

Zinc is one of micronutrients suggested for reduction of coronavirus intensity and may affect the respiratory tract infection due to its antiviral properties. Zinc supplementation by rhinovirus infected patients or those infected by "common cold" viruses including influenza showed promising antiviral effects with reduced burden of disease [21,22]. Importantly, amount of ionic zinc at oral and nasal mucosa (site of infection) positively correlated with its protective effect [21,23]. COVID-19 takes a similar route to enter the body and adequate concentration of zinc in the site may reduce the intensity of infection. Although, it surely needs further clinical trials [24]. Oyster is rich of zinc but it is not halal. Therefore, Muslims can consume red and poultry meat as source of zinc, instead. The other sources are included to beans, nuts, whole grains, fortified breakfast cereals, and dairy products [25].

Vitamin D reduces the risk of getting common cold [26]. It also enhances cellular immunity [27], modulates adaptive immunity [28], and increases expression of antioxidant-related genes [29]. Several authors proposed vitamin D suplementation for prevention and treatment of COVID-19 [30-32]. Annweiler et al. in a quasiexperimental study found that vitamin D_3 supplementation during or just before COVID-19 infection was associated with less severe COVID-19 and higher survival rate in adult patients [33]. Fatty fishes such as trout, salmon, tuna, and mackerel, and fishes' liver oil are of best sources of vitamin D. Beef liver, cheese, and egg yolks have small amounts of vitamin D, primarily in the form of vitamin D₃ and its metabolite of $25(OH)D_3$. Mushrooms provide variable amounts of vitamin D_2 [34].

Clinical evidences confirm the powerful antiviral activity of vitamin C when used in sufficient quantity [35]. Severe oxidative stress due to rapid release of free radicals and cytokines is a marker of acute respiratory distress syndrome, which leads to cellular injury, organ failure and death. Thus, early intake of adequate antioxidants such as vitamin C may become an effective treatment for these patients. Although conflicting information has been published about effectiveness of vitamin C, majority of studies suggest that low serum level of vitamin C is a risk factor for worsening the disease and use of dietary sources such as fruit, fresh herbs and vegetables can play a preventive role [36-38].

Period of life	Zinc (mg/day)		Vitamin D (IU/day)		Vitamin C (mg/day)	
	Male	Female	Male	Female	Male	Female
0-6 months	2	2	400	400	40	40
6-12 months	3	3	400	400	50	50
1-3 years	3	3	600	600	15	15
4-8 years	5	5	600	600	25	25
9-13 years	8	8	600	600	45	45
14-18 years	11	9	600	600	75	65
$19 \le \text{years}$	11	8	600	600	90	75
			70 < years:	800		
Pregnancy			-			
14-18 years		12	600	600		80
19≤ years		11	600	600		85
Lactation						
14-18 years		13	600	600		115
19≤ years		12	600	600		120

Table 1- Recommended dietary allowance of the effective micronutrients in promotion of antioxidant supply and immune response in human body [39]

 α -Lipoic acid (ALA), a naturally occurring disulfide compound, acts as a cellular coenzyme and has been used for treatment of polyneuropathies and hepatic disorders for years [40]. It plays a pivotal role in scavenging the free radicals to protect body against oxidative damage. In addition, ALA is able to enhance intracellular glutathione level [41]. Oxidative stress and glucose-6-phosphate dehydrogenase (G6PD) deficiency in host cells are important factors in infectivity of human coronavirus 229E. Addition of ALA to G6PD-knockdown cells could attenuate the susceptibility to human coronavirus 229E infection [42]. Interestingly, Baur et al. found that ALA inhibited the replication of HIV-1 [43]. As a result, ALA is a good candidate in treatment of COVID-19. Its dietary sources are red meat, liver, kidney, spinach, broccoli, and tomato.

Nicotianamine is a metal ligand in plants such as soybean [44], which has angiotensin-convertingenzyme-2 inhibiting effect [45]. It also is a potential candidate effective against COVID-19 infection [46].

Flavonoids are important class of natural components and have several subgroups including chalcones, flavones, flavonols, and isoflavones [47]. Jo et al. suggested that anticoronavirus activity of some flavonoids (Herbacetin, rhoifolin, and pectolinarin) is due to inhibition of 3C-like protease (3CLpro). Herbacetin, iso-bavachalcone, quercetin $3-\beta$ -d-glucoside, and helichrysetin are able to block enzymatic activity of MERS-CoV/3CLpro [48-51].

Usually, females show more robust immune responses than males against viral infections [52]. With regard, resveratrol, a phytoestrogen found in grape seeds, is a potent anti-MERS agent *in vitro* [53]. Therefore, 17β -Estradiol or phytoestrogen might be effective in treatment of COVID-19 [54].

Two important bioactive compounds in licorice root (Glycyrrhiza radix) are triterpene glycoside glycyrrhizic acid (glycyrrhizin, GL) and its aglycone (18α-glycyrrhetinic acid, GLA) [55]. Both compounds have anti-tumoral, antiinflammatory, and antiviral properties [56]. GL was one of the first compounds found to be active against SARS-coronavirus (SARS-CoV) *in vitro* [57], and also used for treatment of SARSinfected patients [58].

Intake of "black tea" can improve the body strength to fight against coronavirus at early stages of infection [59]. Theaflavin 3,3'-Odigallate and theaflavin 3-O-gallate are two active compounds in black tea. Theaflavin and its derivatives can play a significant role in treatment of coronavirus infection [60-62].

Table 2- Food components for promotion of body health against coronavirus

Component	Mode of action	Food source	Reference
Zinc	Improving tight junctions	Red meat, poultry	[21-24]
Vitamin D	Immunomodulation	Egg yolk, supplementation	[26-28], [33]
Vitamin C	Antioxidant	Citrus fruits	[36-38]
α-Lipoic acid	Enhance intracellular glutathione	Red meat, organ meats like	[40-42]
		liver and kidney	
Nicotianamine	Angiotensin-converting-enzyme-2 inhibiting effect	Soybean	[45,46]
Flavonoids	Inhibition of 3C-like protease	Fruits and vegetables,	[48-51]
Phytoestrogen	Potent anti-MERS agent	Soybean and flaxseed	[53,54]
Glycyrrhizin	Anti-inflammatory	Licorice root	[56-58]
Theaflavin	Inhibit the activity of SARS-CoV-2 3CL-Protease	Black tea	[60-62]

3. Incidence and spread of COVID-19 in view of halal

Some animal-based foods have been associated with the novel coronavirus pandemic, which none of them is considered as halal by Islam. Pangolin, mink and bat are of concern in this regard [63-66]. This global catastrophe, which has killed thousands of people, is a strong alarm for human to pay more attention to their edible sources. Further research is required to strongly illustrate the curing role of halal foods in viral infections.

4. Conclusion

At this study, we focused on beneficial impacts of halal-based foods and relevant evidences regarding promotion of heath in viral-infected patients. The current coronavirus (COVID-19) pandemic is a sign careless in selection of halal food sources. Halal nutrition refers to intake of essential nutrients from halal sources, which helps the normal function of human body. Development of efficient vaccines and antiviral medicines is time-consuming. Therefore, intake of natural bioactive compounds can mitigate acute respiratory distress syndrome associated with coronavirus by different mechanisms. Obviously, clinical studies are needed to approve their significant impact in practice.

5. Conflict of interest

The authors declare no conflict of interests.

References

1. World Health Organization. Coronavirus disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-

coronavirus-2019. Accessed: [25 October 2020].

2. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person to person transmission: a study of a family cluster. The Lancet. 2020; 395(10223): 514-523.

3. Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019; 11: 41.

https://doi.org/10.3390/v11010041

4. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal. 2019; 16(1): 69.

https://doi.org/10.1186/s12985-019-1182-0

5. De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology. 2016; 14, 523-534.

https://doi.org/10.1038/nrmicro.2016.81

6. Riaz MN, Chaundry MM. Halal food production. CRC Press LLC. 2004.

7. Abdul Latif M, Rahman SA. Development of halal nutrition framework. Journal of Education and Social Sciences. 2018; 9(3): 96-104.

8. Vilcek S. SARS-CoV-2: Zoonotic origin of pandemic coronavirus. Acta Virologica. 2020; 64(3): 281-287. <u>https://doi.org/10.4149/av_2020_302.</u>

9. Tizaoui K, Zidi I, Lee KH, Ghayda RA, Hong SH, Li H, et al. Update of the current knowledge on genetics, evolution, immunopathogenesis, and transmission for coronavirus disease 19 (COVID-19). International Journal of Biological Sciences. 2020; 16(15): 2906-2923. https://doi.org/10.7150/iibs.48812

https://doi.org/10.7150/ijbs.48812

10. Hobbs EC, Reid TJ. Animals and SARS-CoV-2: Species susceptibility and viral transmission in experimental and natural conditions, and the potential implications for community transmission. Transboundary and Emerging Diseases. 2020; 1-18. https://doi.org/10.1111/tbed.13885

11. Azeez W. The halal dietary system as a recipe for good health. 2013; 1-14. http://dx.doi.org/10.2139/ssrn.2203518

12. Cintoni M, Rinnine lla E, Giuseppina Annett M, Cristina Mele M. Nutritional management in hospital setting during SARS-CoV-2pandemic: a real-life experience. European Journal of Clinical Nutrition. 2020; 74: 846–847.

https://doi.org/10.1038/s41430-020-0625-4

13. Chinese Medical Association. Branch of Chinese medical association parenteral and enteral nutrition (CSPEN). "Experts' recommendations on medical nutrition therapy for patients with novel coronavirus pneumonia". 2020.

https://www.cma.org.cn/art/2020/1/30/art 15 32196. html.

14. Li XY, Du B, Wang YS, Kang HYJ, Wang F, Sun B, et al. The key points in treatment of the critical coronavirus disease 2019 patient. Chinese Journal of Tuberculosis and Respiratory Diseases. 2020; 43(4): 277-281.

https://doi.org/10.3760/cma.j.cn112147-20200224-00159

15. Kaminogawa S, Nanno M. Modulation of immune functions by foods. Evidence-Based Complementary and Alternative Medicine. 2004; 1(3): 241-250. https://doi.org/10.1093/ecam/neh042.

16. Chandra RK. Nutrition and the immune system from birth to old age. European Journal of Clinical Nutrition. 2002; 56: 73–76. https://doi.org/10.1038/sj.ejcn.1601492

17. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Annals of Nutrition and Metabolism. 2007; 51(4): 301-23.

https://doi.org/10.1159/000107673.

18. Lesourd B. Long-term yogurt consumption by elderly patients: effect on the immune system. NI: Yogurt: myth versus reality. McLean, VA: Donna Curtis, 1996: 90-101.

19. Alwarawrah Y, Kiernan K, MacIver NJ. Changes in nutritional status impact immune cell metabolism and function. Frontiers in Immunology. 2018; 9: 1-14. https://doi.org/10.3389/fimmu.2018.01055.

20. Lesourd B. Protein undernutrition as the major cause of decreased immune function in the elderly: clinical and functional implications. Nutrition Reviews. 1995; 53(4). 86-94. https://doi.org/10.1111/j.1753-4887.1995.tb01523.x

21. Kurugol Z, Akilli M, Bayram N, Koturoglu G. The prophylactic and therapeutic effectiveness of zinc sulphate on common cold in children. Acta Paediatrica. 2006; 95(10): 1175-1181. https://doi.org/10.1080/08035250600603024

22. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Advance in Nutrition. 2019; 10(4): 696-710. https://doi.org/10.1093/advances/nmz013.

23. Eby GA 3rd. Zinc lozenges as cure for the common cold--a review and hypothesis. Med Hypotheses. 2010; 74(3): 482-492. https://doi.org/10.1016/j.mehy.2009.10.017

24. Razzaque MS. COVID-19 pandemic: can maintaining optimal zinc balance enhance host resistance? The Tohoku Journal of Experimental Medicine. 2020; 251(3): 175-181. https://doi.org/10.1620/tjem.251.175

25. U.S. Department of Agriculture, Agricultural Research Service. Food Data Central external link disclaimer. 2019.

26. Rondanelli M, Miccono A, Lamburghini S, Avanzato I, Riva A, Allegrini P, et al. Self-care for common colds: the pivotal role of vitamin D, vitamin C, zinc, and Echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-Practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evidence-Based Complementary and Alternative Medicine. 2018; 2018: 1-36.

https://doi.org/10.1155/2018/5813095

27. Cantorna MT. Mechanisms underlying the effect of vitamin D on the immune system. Proceedings of the Nutrition Society. 2010; 69(3): 286-289. https://doi.org/10.1017/S0029665110001722.

28. Sharifi A, Vahedi H, Nedjat S, Rafiei H, Hosseinzadeh-Attar MJ. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebocontrolled trial. Apmis. 2019; 127(10): 681-687.

https://doi.org/10.1111/apm.12982

29. Lei GS, Zhang C, Cheng BH, Lee CH. Mechanisms of action of vitamin D as supplemental therapy for *Pneumocystis pneumonia*. Antimicrobial Agents and Chemotherapy. 2017; 61(10): 1-13. https://doi.org/10.1128/AAC.01226-17

30. Wimalawansa SJ. Global epidemic of coronavirus-COVID-19: What we can do to minimize risks. European Journal of Biomedical. 2020; 7(3): 432-438.

31. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 Infections and Deaths. Nutrients. 2020; 12(4): 988.

https://doi.org/10.3390/nu12040988

32. Braiman M. Latitude dependence of the COVID-19 mortality rate-a possible relationship to vitamin D deficiency?. 2020. Available at: http://dx.doi.org/10.2139/ssrn.3561958

33. Annweiler C, Hanotte B, Grandin de l'Eprevier C, Sabatier JM, Lafaie L, Celarier T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. The Journal of Steroid Biochemistry and Molecular Biology. 2020; 204: 105771. https://doi.org/10.1016/j.jsbmb.2020.105771

34. Roseland JM, Phillips KM, Patterson KY, Pehrsson PR, Taylor CL. Vitamin D in foods: An evolution of knowledge. In: Feldman D (ed.). Vitamin D, Volume 2: Health, Disease and Therapeutics. Fourth Edition. Elsevier. 2018: 41-77. https://doi.org/10.1016/B978-0-12-809963-6.00060-2

35. Ruben Manuel Luciano Colunga Biancatelli, Max Berrill & Paul E. Marik. The antiviral properties of vitamin C. Expert Review of Anti-infective Therapy. 2020; 18(2): 99-101.

https://doi.org/10.1080/14787210.2020.1706483

36. Feyaerts AF, Luyten W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition. 2020; 79-80: 110948. https://doi.org/10.1016/j.nut.2020.110948

37. Chaudhary S, Wright RM, Patarroyo-Aponte G. Role of vitamin C in critically ill patients with COVID-19: is it effective? Acute and Critical Care. 2020; 35(4): 307-308.

https://doi.org/10.4266/acc.2020.00416

38. Arvinte C, Singh M, Marik PE. Serum levels of vitamin C and vitamin D in a cohort of critically III COVID-19 Patients of a North American community hospital intensive care unit in May 2020: A Pilot

Study. Medicine in Drug Discovery. 2020; 8: 100064. https://doi.org/10.1016/j.medidd.2020.100064

39. Mahan LK, Raymond JL. krause's food & the nutrition care process. Fourteen edition. Elsevier. 2017.

40. Simbula G, Columbano A, Ledda-Columbano GM, Sanna L, Deidda M, Diana A, Pibiri M. Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis. 2007; 12(1): 113-123.

https://doi.org/10.1007/s10495-006-0487-9

41. Tibullo D, Li Volti G, Giallongo C, Grasso S, Tomassoni D, Anfuso CD, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflammation Research. 2017; 66(11): 947-959.

https://doi.org/10.1007/s00011-017-1079-6

42. Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DTY. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. The Journal of Infectious Diseases. 2008; 197: 812-816.

https://doi.org/10.1086/528377

43. Baur A, Harrer T, Peukert M, Jahn G, Kalden JR, Fleck Enstein B. Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication. Wiener klinische Wochenschrift. 1991; 69: 722-724.

https://doi.org/10.1007/bf01649442

44. Trampczynska A, Bottcher C, Clemens S. The transition metal chelator nicotianamine is synthesized by filamentous fungi. FEBS Letters. 2006; 580(13): 3173-3178.

https://doi.org/10.1016/j.febslet.2006.04.073

45. Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, Sugiyama T. Nicotianamine is a novel angiotensinconverting enzyme 2 inhibitor in soybean. Biomedical Research. 2015; 36(3): 219-224. https://doi.org/10.2220/biomedres.36.219

46. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology. 2020; 92(5): 479-490. https://doi.org/10.1002/jmv.25707

47. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. Journal of Nutritional Science. 2016; 5: 47.

https://doi.org/10.1017/jns.2016.41

48. Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids aspotent MERS-COV

3C- like protease inhibitors. Chemical Biology and Drug Design. 2019; 94: 2023-2030. https://doi.org/10.1111/cbdd.13604

49. Alberca RW, Teixeira FME, Beserra DR, de Oliveira EA, Andrade MMS, Pietrobon AJ, et al. Perspective: The potential effects of naringenin in COVID-19. Frontiers in Immunology. 2020; 11: 570919.

https://doi.org/10.3389/fimmu.2020.570919

50. Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One. 2020; 15(10): e0240653.

https://doi.org/10.1371/journal.pone.0240653

51. Goris T, Perez-Valero A, Martinez I, Yi D, Fernandez-Calleja L, San Leon D, et al. Repositioning microbial biotechnology against COVID-19: the case of microbial production of flavonoids. Microbial Biotechnology. 2020; 1-17. https://doi.org/10.1111/1751-7915.13675

52. Marriott I, Huet-Hudson YM. Sexual dimorphism in innate immune responses to infectious organisms. Immunologic Research. 2006; 34: 177-192. https://doi.org/10.1385/IR:34:3:177

53. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS -COV infection by resveratrol. BMC Infectious Diseases. 2017; 17: 144. https://doi.org/10.1186/s12879-017-2253-8

54. Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics. 2020: 1-10. https://doi.org/10.1080/07391102.2020.1761881

55. Shibata S. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi. 2000; 120(10): 849-862. https://doi.org/10.1248/yakushi1947.120.10_849

56. Hoever G, Baltina L, Michaelis M. Antiviral activity of glycyrrhizic acid derivatives against SARS-Coronavirus. Journal of Medicinal Chemistry. 2005; 48(4): 1256-1259.

https://doi.org/10.1021/jm0493008

57. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquoriceroots, and replication of SARSassociated coronavirus. Lancet. 2003; 361(9374): 2045-2046.

https://doi.org/10.1016/s0140-6736(03)13615-x

58. Haiying L, Na H, Xiaoyuan X. The curative effects of glycyrrhizin on patients with SARS. Annual Meeting of The Society of Infectious and Parasitic Diseases. Chinese Medical Association. Wuhan, China. 2003.

59. Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics. 2020: 1-10.

https://doi.org/10.1080/07391102.2020.1766572

60. Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, et al. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease *In Vitro*. Evidence-Based Complementary and Alternative Medicine. 2020; 2020: 5630838. https://doi.org/10.1155/2020/5630838

61. Maiti S, Banerjee A. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Development Research. 2020: 1-11. https://doi.org/10.1002/ddr.21730

62. Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine. 2020: 153286. https://doi.org/10.1016/j.phymed.2020.153286

63. Jalava K. First respiratory transmitted food borne outbreak? International Journal of Hygiene and Environmental Health. 2020; 226: 113490. https://doi.org/10.1016/j.ijheh.2020.113490

64. Zhou J, Li C, Liu X, Chiu MC, Zhao X, Wang D, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nature Medicine. 2020; 26(7): 1077-1083.

https://doi.org/10.1038/s41591-020-0912-6

65. Wong MC, Javornik Cregeen SJ, Ajami NJ, Petrosino JF. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv. 2020: 1-9.

https://doi.org/10.1101/2020.02.07.939207

66. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der Honing RW, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance. 2020; 25(23): 2001005.

https://doi.org/10.2807/1560-7917.ES.2020.25.23. 2001005