Determination of zinc, copper, lead and cadmium concentration in breastmilk by anodic stripping voltammetry method and investigating their impact on infants’ growth indicators

Naficeh Sadeghi¹,²*, Behrooz Jannat², Masoomeh Behzad¹, Mohammad Reza Oveisi¹, Mannan Hajimahmoodi¹, Fatemeh Ahmadi¹

¹- Department of Drug and Food Control, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
²- Halal Research Center, Ministry of Health and Medical Education, Tehran, Iran.

This paper is open access under Creative Commons Attribution-NonCommercial 4.0 International license.

Abstract

Background and objective: Breastmilk provides nutritional, immunological, psychological, and developmental benefits for infants. Zinc and copper are of essential minerals, being involved in various biological processes. Their insufficient intake by infants can detrimentally affect function of body. In comparison, lead and cadmium are harmful trace elements which accumulate in women before pregnancy, transfer to fetus through placenta in pregnancy and then to infant through breastmilk in lactating period. The objective of our work was to investigate impact of zinc, copper, lead, and cadmium in breastmilk on infants’ growth and their correlations with the mothers’ dietary intake.

Materials and methods: Breastmilk samples and food intake information were achieved from 160 lactating women in Tehran. Concentration of copper, zinc, lead and cadmium were determined by anodic stripping voltammetry conducted by microwave digestion.

Results and conclusion: According to the results, concentration of copper, zinc, lead and cadmium were calculated as 0.36 ±0.33 mg/l, 2.40 ±2.02 mg/l, 7.15 ±5.96 μg/l, and 1.07 ±1.14 μg/l, respectively. Amounts of zinc and copper in breastmilk were increased by consumption of dairy, vegetables, fruits, bread, and nuts. Infants’ height, weight and head circumference at birthday were directly correlated with zinc concentration while reversed correlation was observed for copper, lead and cadmium in the samples. In conclusion, controlled dietary intake of women before pregnancy and after childbirth has significant impact on healthy status of the infants. Obviously, more attention should be paid on potential sources of lead intake in women of Tehran because of its high concentration in the samples.

Keywords: Cadmium, copper, human breastmilk, lead, voltammetry, zinc

1. Introduction

Quality of the foods taken at early ages determines health status of human in adulthood. Therefore, both nutrients and chemical contamination of human breastmilk is of concern for child healthcare practitioners. As reported,
amount of maternal zinc retained by fetus during the last trimester of pregnancy is less than the amounts secreted into the mothers’ milk at the first three months of lactation [1]. Scientific evidences indicate that benefit of breastfeeding in favor of neural development attenuate the potential adverse impact of environmental neurotoxicants, through immunological, physiological, nutritional, and psychological advantages provided by breastmilk [2]. World Health Organization recommends just breastfeeding for nourishment of infants within the first six months of age followed by breastfeeding with complementary foods within two years of age [3]. Composition of human breastmilk is important for infants’ development. Deficiency of essential trace elements results in impaired growth and development during infancy. Zinc deficiency can resulted in stunted growth and compromise immune function. Copper exists in all tissues and involves in red blood cells synthesis, maintenance of nerve cells, and function of immune system. It is recommended to intake 8-11 mg per day zinc and 0.9 mg per day copper in adulthood; even though they are recommended as 11 and 12 mg per day zinc and also 1 and 1.3 mg per day copper in pregnancy and lactation, respectively [4]. In comparison, contamination of breastmilk with toxic chemicals is concerned. Cadmium as a heavy metal widely disperses in the environment. Women are exposed to cadmium primarily by smoking or eating the foods contained/contaminated by it [5]. In addition, lead is another potentially toxic heavy metal with hepatotoxic, neurotoxic and nephrotoxic effects. It can also cause hemolytic anemia by disruption of cell membrane. Pregnant women and children who live near polluted regions (containing cathode ray tube (CRT) televisions and monitors, desktops, laptops, liquid crystal display (LCD) monitors, cell phones, keyboards, computer mice, printers, and copiers) are at severe risk of exposure to heavy metals such as cadmium and lead [6]. World Health Organization set a limit of 5 µg/l for lead and 0.1 µg/l for cadmium in breastmilk [7].

In lactation, heavy metals are transported from the mothers’ plasma to mammary glands and then secreted into breastmilk. In this regard, Kippler et al. reported that low exposure to cadmium by breastmilk at early ages induces oxidative stress [8]. Despite the study shown no impact of maternal diet on concentration of iron, zinc, and copper in the breastmilk [5], Honda et al. reported that amount of toxic metals in breastmilk collected from 68 Japanese mothers, aged 19-38 years, at 5-8 days postpartum was significant [9]. Therefore, impact of the mothers’ nourishment on quality and quantity of their milk is a controversial issue [10].

Several techniques have been used for analysis of trace metals including flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry (ICP-MS) [11,12]. Among them, differential pulse anodic stripping voltammetry (DPASV) has demonstrated great sensitivity for detection of zinc, copper, lead, and cadmium at low quantities. Therefore, this study aimed to determine amounts of zinc, copper, lead and cadmium by DPASV technique in breastmilk samples collected from 160 women within five months postpartum in Tehran in 2015. In addition, correlation of the heavy metals with infants’ growth and dietary intake of the mothers is discussed.

2. Materials and methods
2.1. Sample size and sampling procedure
In the current research, the women who took nutritional supplements were excluded. Breastmilk of 160 healthy lactating women of Fazel, Kan, Yaftabad, and Arash Clinic in Tehran (Iran) were collected. About 10 ml of each sample was stored in acid-washed tube and kept at -20 °C until analysis.

The sample size (n) was calculated by Eq. 1.

\[n = \frac{\sigma^2(Z_{1-\beta}+Z_{1-\alpha})^2}{(\mu_0-\mu_1)^2} \]

Eq. 1
σ = 2.02 α = 0.05 β = 0.2
μ₀ = 2.79 μ₁ = 2.40

2.2. Sample preparation
For mineralization, the samples were transferred to polyethylene tubes and digested by high performance microwave (Berghof Speed wave, Germany) equipped with a rotor designed for pressures up to 50 bar. Then, one ml of breastmilk was transferred to the digestion vessel and mixed with 5 ml nitric acid (65%, Suprapur®, Merck). Then, one ml of high purity hydrogen peroxide (30%, Suprapur®, Merck) was added and mineralization was done at 175 °C for 50 min. Hydrogen peroxide was further removed by heating and the solution was diluted by 5 ml of 0.1 M nitric acid.

2.3. Instrumental analysis
Amounts of zinc, copper, lead and cadmium were determined by differential pulse anodic stripping voltammetry with a hanging mercury drop electrode (Model 746 VA Trace Analyzer, Metrohm, Switzerland). The analysis was conducted by deposition potential of -1.20 V, deposition time of 30-90 s, scan rate of 6 mv/s, pulse amplitude of 50 mv, and final potential of ±0.3 v. Standard solutions of zinc, copper, lead and cadmium at concentration of 1 g/l were prepared. At first, blank polarogram of the supporting electrolyte was recorded by using 10 ml of acetate buffer. Then, 500 μl of the samples were added to the cells and their polarogram was recorded. The analysis was done by standard addition method by adding 100 μl of the standard solutions to the samples [13].

2.4. Statistical analysis
The data was analyzed by SPSS software ver. 16. One-way ANOVA method was performed and the means were compared by Tukey test. All of the experiments were repeated three times. Difference of data was significant at p < 0.05. The descriptive data is presented as mean ±SD.

3. Results and discussion

In the present study, limits of detection of 1.20 μg/l for zinc, 2.80 μg/l for copper, 0.30 μg/l for lead and 0.15 μg/l for cadmium were achieved. Results of the heavy metals are shown in Table 1, and descriptive data of the lactating women and their infants is presented in Table 2.

Table 1- Amounts of heavy metals in breastmilk of lactating women in Tehran

<table>
<thead>
<tr>
<th>Clinic</th>
<th>N</th>
<th>Zn (mg/l)</th>
<th>Cu (mg/l)</th>
<th>Pb (μg/l)</th>
<th>Cd (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
<td>1.33 ±1.35</td>
<td>0.64 ±0.77</td>
<td>6.32 ±2.76</td>
<td>0.21 ±0.25</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>3.01 ±2.36</td>
<td>1.42 ±1.40</td>
<td>8.36 ±5.12</td>
<td>0.52 ±0.43</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>2.62 ±2.00</td>
<td>0.98 ±1.04</td>
<td>5.57 ±5.12</td>
<td>0.29 ±0.27</td>
</tr>
<tr>
<td>D</td>
<td>40</td>
<td>2.07 ±1.88</td>
<td>1.07 ±1.10</td>
<td>8.17 ±7.18</td>
<td>0.37 ±0.30</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>2.40 ±2.02</td>
<td>1.07 ±1.14</td>
<td>7.15 ±5.96</td>
<td>0.36 ±0.33</td>
</tr>
</tbody>
</table>

*Zn: zinc; Cu: copper; Pb: lead; Cd: cadmium

Table 2- Descriptive data of the lactating women and their infants

<table>
<thead>
<tr>
<th>Result</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mothers age (years)</td>
<td>26.4 ±4.8</td>
</tr>
<tr>
<td>Infant age (month)</td>
<td>5.6 ±3.2</td>
</tr>
<tr>
<td>Height at birth (cm)</td>
<td>50.5 ±2.96</td>
</tr>
<tr>
<td>Weight at birth (kg)</td>
<td>3.26 ±0.45</td>
</tr>
<tr>
<td>Head circumference at birth (cm)</td>
<td>34.58 ±2.43</td>
</tr>
</tbody>
</table>

In our study, zinc concentration (2.40 ±2.02 mg/l) was comparable to 4.1 mg/l that was reported in breastmilk of 12-20 weeks postpartum mothers in Austria [14], 1.17–5.31 mg/l in breastmilk of Canadian mothers [15], and 2.0 mg/l in breastmilk of women in Texas [16]. Copper concentration of our study (1.07 ±1.14 mg/l) was higher than the amounts reported as 0.09–0.27 mg/l in Taiwan [17], 0.36–0.47 mg/l in Korea [18], and 0.86 mg/l in Austria [14]. Our result of lead concentration (7.15 ±5.96 mg/l) was higher than the amounts reported as 0.09–0.27 mg/l in Taiwan [17], 0.36–0.47 mg/l in Korea [18], and 0.86 mg/l in Austria [14]. Our result of lead concentration (7.15 ±5.96 mg/l) was higher than the amounts reported as 0.09–0.27 mg/l in Taiwan [17], 0.36–0.47 mg/l in Korea [18], and 0.86 mg/l in Austria [14]. Our result of lead concentration (7.15 ±5.96 mg/l) was higher than the amounts reported as 0.09–0.27 mg/l in Taiwan [17], 0.36–0.47 mg/l in Korea [18], and 0.86 mg/l in Austria [14]. Our result of lead concentration (7.15 ±5.96 mg/l) was higher than the amounts reported as 0.09–0.27 mg/l in Taiwan [17], 0.36–0.47 mg/l in Korea [18], and 0.86 mg/l in Austria [14].
Heavy metal determination in breastmilk

Sadeghi et al.

Human, Health and Halal Metrics; 2020: 1(2)

Comparison of our results to other studies is presented at Table 3. We found significant correlation of breastmilk zinc, copper, lead and cadmium with height at birth, weight at birth, head circumference at birth and growth of infants. There was direct correlation between height at birth with zinc concentration but indirect correlation with copper, lead and cadmium in breastmilk. Orun et al. reported that breastmilk cadmium in second month after birth was negatively correlated with z-scores of head circumference and weight of girls at birth while no correlation was observed between lead/cadmium and Edinburgh Postpartum Depression Scale scores [26].

De Felip et al. observed no significant association of seafood consumption by Italian mothers with the environmental pollutants in their breastmilk. In addition, no health risk in breastfed infants was observed [27].

Tanner et al. reported that selenium correlates with copper positively [28]. In accordance, Kantola et al. showed that selenium addition to fertilizers in Finland increased selenium concentration in human milk and possibly had impact on zinc and copper concentration in maternal breastmilk [29]. A comparable study was done on lactating cows exposed to environmental toxicants through which increased lead and cadmium were observed in their blood and milk [30].

In one study conducted in Tehran in 2020, amounts of trace elements in raw and bottled milks was measured by DPASV. Concentration of zinc, copper, lead, and cadmium were estimated as 4.990 ±6.244, 2.424 ±4.017, 0.271 ±0.640 and 0.099 ±0 μg/ml in raw milk, respectively, and 0.999 ±0.873, 0.43 ±0.188, 0.048 ±0.033 and 0.049 ±0 μg/ml in bottled milk, respectively [31].

<table>
<thead>
<tr>
<th>Country</th>
<th>Zn (mg/l)</th>
<th>Cu (mg/l)</th>
<th>Pb (mg/l)</th>
<th>Cd (mg/l)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran</td>
<td>2.40 ±2.02</td>
<td>1.07 ±1.14</td>
<td>7.15 ±5.96</td>
<td>0.36 ±0.33</td>
<td>Current study</td>
</tr>
<tr>
<td>Iran</td>
<td></td>
<td></td>
<td>3.06–19.47</td>
<td>0.45–5.87</td>
<td>[33]</td>
</tr>
<tr>
<td>Iran</td>
<td>2.95</td>
<td>0.36</td>
<td></td>
<td></td>
<td>[34]</td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td>4.7</td>
<td></td>
<td>0.43</td>
<td>[35]</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.24–5.71</td>
<td>0.32–0.67</td>
<td>0.74–6.4</td>
<td>0.028–0.27</td>
<td>[36]</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td>0.1–32.3</td>
<td>0.6–11.3</td>
<td>[37]</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.39–5.09</td>
<td>0.33–0.97</td>
<td>0.07–4.03</td>
<td></td>
<td>[38]</td>
</tr>
<tr>
<td>Croatia</td>
<td>0.62–15.0</td>
<td>0.27–1.35</td>
<td></td>
<td></td>
<td>[39]</td>
</tr>
<tr>
<td>Greece</td>
<td>4.90</td>
<td>0.38</td>
<td>0.48</td>
<td>0.19</td>
<td>[3]</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.7</td>
<td>0.83</td>
<td>8.7</td>
<td>9.7</td>
<td>[40]</td>
</tr>
<tr>
<td>Kuwait</td>
<td>1.7–3.2</td>
<td>0.41–0.71</td>
<td></td>
<td></td>
<td>[41]</td>
</tr>
<tr>
<td>China</td>
<td>40.6</td>
<td>0.67</td>
<td></td>
<td></td>
<td>[42]</td>
</tr>
</tbody>
</table>

Table 3- Heavy metals concentration in breastmilk of women from different studies
and 0.060 ±0.040 mg/kg, respectively, in powdered milk (n = 240) [32].

4. Conclusion
Our investigation showed that breastmilk of Iranian mothers had enough essential elements of zinc and copper. Fortunately, cadmium concentration in the samples was within the safety limits recommended by international agencies. In comparison, lead concentration of breastmilk was high that is a major hazard in public health especially for neonatal and children undergrown at industrial regions. We conclude that there is a need for conducting risk assessment studies to establish national safe limits for heavy metals in breastmilk. Although, more extensive studies with larger sample size should be done to minimize the uncertainties.

5. Acknowledgment
This study was supported by a grant (no. 89-03-33-11269) from Tehran University of Medical Science, Tehran, Iran.

6. Conflict of interest
The authors declare that there is no conflict of interest.

References
16. Hannan MA, Faraji B, Tanguma J. Maternal milk concentration of zinc, iron, selenium, and iodine and

